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A Mixed-Transfer-Matrix Method for Simulating
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We develop a mixed-transfer-matrix approach for computing the macroscopic
conductivity of a three-constituent normal conductor/perfect insulator/perfect
conductor random network. This is applied to two-dimensional and three-
dimensional samples at a percolation threshold. Such networks are simulated
in order to test whether a diluted percolating network of normal conducting
bonds remains in the same universality class of critical behavior when a finite
fraction of those bonds have been replaced by perfectly conducting bonds. Also
tested by such simulations is whether a percolating mixture of normal and
perfectly conducting bonds remains in the same universality class of critical
behavior when a finite fraction of the normal bonds are replaced by perfectly
insulating bonds. These questions are crucial for some recently published exact
results which connect the macroscopic electrical and elastic responses of perco-
lating networks.

KEY WORDS: Percolation; critical exponents; composite media; universality;
elastic; electric.

1. INTRODUCTION

Interest in the critical behavior of macroscopic elastic stiffness moduli of
percolating networks has been revived as a result of recent advances in
the understanding of connections with the macroscopic electrical response
of such networks(1,2). In these references, an exact relation is argued to
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hold between the critical exponents t , T , which characterize how the mac-
roscopic electrical conductivity σe and the macroscopic elastic stiffness
moduli Ce tend to 0 when a randomly diluted network approaches its per-
colation threshold pc from above:

σe ∼∆pt , Ce ∼∆pT , ∆p ≡p −pc >0, T = t +2ν.

Here ν is the percolation correlation length critical exponent and p is
the fraction of occupied or normal conducting bonds that are present in
the diluted network, i.e., after the bonds marked for dilution have been
removed.

Another exact relation, also argued to hold in those references, is that
the critical exponents s, S, which characterize how σe and Ce tend to ∞
in a mixture of normal conducting or elastic bonds and perfectly conduct-
ing or perfectly rigid bonds when the fraction p of the latter bonds tends
to pc from below, are equal:

σe ∼|∆p|−s , Ce ∼|∆p|−S, ∆p ≡p −pc <0, S = s.

It should be mentioned that, in order for the percolation threshold
pc to coincide with the elastic rigidity threshold, it is not enough that
each bond has a bond stretching energy k(δb)2, where δb is the change
in length of the bond and k is the spring constant. It must also cost
elastic energy to change the relative orientation of any nearest-neighbor
bond pair, as well as the relative orientation of further-than-nearest-neigh-
bor bond pairs, out to bond pairs that are separated from each other by
a chain of d − 2 intermediate bonds in the case of a d-dimensional net-
work.(2,3) Such bond pairs are called “furthest neighbor bonds” and are
denoted by FNB.

The arguments that S = s and T = t + 2ν, though quite rigorous,
are based on some assumptions which, though reasonable, are unproven.
These assumptions have to do with the ranges of universality of critical
behavior in the relevant percolation problems.

One crucial assumption involves a diluted network, or a mixture of
normal conducting or normal elastic bonds, denoted by M, and perfectly
insulating or perfectly soft elastic bonds, denoted by I . Such a mixture
is denoted by M/I . The assumption is that, if a finite fraction of the
M bonds are replaced by perfectly conducting or perfectly rigid bonds,
denoted by S, the critical behaviors of σe and Ce remain unchanged. i.e.,
the same values of t and T still characterize those behaviors. Such an
altered network is made of three constituents, and is at or just above the
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combined percolation threshold of the M and S bonds. We denote such
networks by MS/I .

Another, similarly crucial assumption involves a two-constituent mix-
ture of M and S bonds, which we denote by M/S. Here the crucial
assumption is that, if a finite fraction of the M bonds are replaced by I

bonds, the critical behaviors of σe and Ce again remain unchanged. i.e.,
the same values of s and S still characterize those behaviors. After this
replacement, the network becomes a three-constituent network where the
fraction of S bonds is still at or just below its percolation threshold. Such
networks will be denoted by MI/S.

The two universality assumptions described above are required in
order to argue that S = s and T = t + 2ν for networks with dimensional-
ity d that is greater than 2(2). Such assumptions usually cannot be justi-
fied rigorously, because the models in question are too complicated. Exact
results vis-a-vis joint universality class for different models exist only for
a few cases of solvable models that have a critical point, e.g., some of the
two-dimensional Ising Hamiltonians.(4) Usually, universality properties can
only be examined either by experiments or by approximate treatments of
the models in question. In this article we attempt the latter approach.

It would seem, at first sight, that we need to do this separately for σe
and for Ce of the altered networks. However, since the exact equalities S =
s, T = t +2ν follow from the universality assumptions that we will be test-
ing, it will actually suffice to verify those assumptions in the case of σe. The
same conclusion regarding the critical behavior of Ce then follows automat-
ically—see ref. 2. To this end, we develop a modification of the transfer
matrix method for calculating the macroscopic conductance of a nonuni-
form, disordered resistor network. This modification is necessary in order
to cope with the extreme situation of three-constituent mixtures of M, I ,
and S bonds. Such networks are denoted by M/I/S in the general case.
The notation MI/S is reserved for the special case of M/I/S networks that
are near the percolation threshold of the S constituent. Similarly, the nota-
tion MS/I is reserved for the special case of M/I/S networks that are near
the joint percolation threshold of the M and S constituents.

The rest of this article is organized as follows: Section 2 describes a
new calculational approach, called “mixed-transfer-matrix method”, which
we have developed for simulating M/I/S networks. Section 3 describes
the results of simulations of MI/S and MS/I networks in two and
three dimensions. Section 4 describes a more accurate test of universal-
ity using the same kinds of simulations. Finally, Section 5 summarizes our
main conclusions and indicates avenues for further research. The appen-
dices provide technical details connected with the calculational procedure
described in Section 2.
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2. CALCULATIONAL METHODS

2.1. Review of the Transfer Matrix Method

In the early 1980s, the transfer matrix method(5–7) was introduced for
computing the conductivity of random networks made of either normal
conducting and perfectly insulating bonds (M/I ), or normal conducting
and perfectly conducting bonds (M/S). A long strip Nx ×Ny ×Nz (Nx ×
Nz in two dimensions (2D)) was constructed by adding bond after bond,
gradually building up the strip along the x-direction. In the M/I case (see
Fig. 1(a)), all the sites at nz =1 and nz =Nz +1 are connected by perfectly
conducting bonds, i.e., the strip was put between two equipotential plates,
like those of a parallel plate capacitor. For a three-dimensional (3D) strip,
a periodic boundary condition was imposed along the y-direction. Volt-
ages Vi (i =1, . . . ,m; m=Ny × (Nz −1)+2 in 3D, m=Nz +1 in 2D) were
applied to each of m external sites, called “terminal sites (TS)”, at the edge
of the strip under construction in the x-direction, resulting in currents Ij

that flow into the TS j . The macroscopic current flows across the strip
along the z-direction. The relation between the voltages and currents at
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Fig. 1. (a) Two-dimensional strip of M/I , Nz =3,m=4. (b) Two-dimensional strip of M/S,
Nz =4,m=4. At nx =0, the voltage is 0. (c) Two-dimensional strip of M/I/S, Nz =3,m=4.
A zero-current boundary condition is applied at all the nx = 0 sites. A= [V1, I2, V3, I4]t , B =
[I1, V2, I3, V4]t , Θ = [1,−1,1,−1].
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the TS is given by the conductance matrix G

I =GV,

where I = [I1, I2, . . . , Im]t , V = [V1, V2, . . . , Vm]t . At the end of the strip, an
entire layer of insulating bonds is added. This makes all the elements of
G vanish with the exception of G11, Gmm, G1m, and Gm1. In particular,
G11 relates the voltage applied between the lower (nz =Nz +1) and upper
(nz =1) surfaces to the total current flowing between those surfaces. If the
length of the strip is Nx , then the conductance Σ per unit length of the
strip is given by

Σ = lim
Nx→∞

G11/Nx.

In the case of M/S (see Fig. 1(b)), currents Ii(i = 1, . . . ,m) are
applied to each of m (m=Ny ×Nz in 3D, m=Nz in 2D) TS, while periodic
boundary conditions are applied in the y- and z-directions. The voltages
and currents are now related by the resistance matrix R:

V =RI.

The first layer of the strip (nx = 0) is now taken to be an equipotential
plate by starting the calculation with R ≡0. At the end of the strip (nx =
Nx + 1), an entire layer of perfectly conducting bonds is added, resulting
in another equipotential plate. The inverse conductance per unit length of
the strip is then given by

Σ−1 = lim
Nx→∞

Rii/Nx, i =1, . . . ,m,

where i can have any value.
The main reason for using the transfer matrix method for simu-

lations of disordered conducting networks is numerical efficiency: while
direct solution of Kirchhoff’s equations (by Gaussian elimination or other
efficient method) requires O(n3) = O(N3d) operations, where n = Nd is
the total number of network sites in a d-dimensional hypercubic sample
network, the transfer matrix method only requires O(N3d−2) operations.
Moreover, the appearance of many isolated TS (i.e., a TS that is not elec-
trically connected to any other TS) in an M/I network close to its perco-
lation threshold considerably reduces the number of nontrivial operations
needed in the computations.(7) Similarly, the appearance of many perfectly
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connected pairs of TS (i.e., a pair of TS that are connected to each other
by a path of perfectly conducting bonds) in an M/S network close to
its percolation threshold also reduces the number of nontrivial operations
considerably.

The reason why different approaches are necessary in the implemen-
tation of the transfer matrix method to M/I and M/S networks has to do
with the possible appearance of infinite values for some of the elements of
the matrices R and G: R will have such an element Rij =∞ whenever the
TS i and j happen to be electrically unconnected. Similarly, G will have
an infinite element Gij =∞ whenever the TS i and j are connected by a
path of perfectly conducting bonds. Clearly, when trying to implement the
transfer matrix method for a three-constituent M/I/S network, neither of
the above approaches is acceptable: both matrices R and G will sometimes
have infinite elements during intermediate stages of the simulation, even
when the final macroscopic conductance and resistance of the completed
sample are finite. This problem cannot be easily overcome by the trivial
solution of replacing ∞ by a very large finite constant, and replacing 1/∞
by 0: in the calculations we would sometimes wind up with different large
constants that represent ∞, and these would sometimes lead to erroneous
results when these large constants do not properly cancel each other out.
Also, suppose that an infinite conductance path connects between two TS,
say i and j . If a third TS, denoted by 1, is connected to i and j by finite
conductance paths, then although Gii = Gjj = Gij = Gji = ∞, the values
of G1i , Gi1, G1j , Gj1 are not uniquely defined: if all the TS voltages are
0 except for V1, then a definitely determined current I1 =G11V1 will flow
into TS 1, but part of this same current can flow out of the two TS i and
j in different proportions which are indeterminate.

In order to deal more effectively with the simulation of M/I/S net-
works, we therefore introduce below a “mixed-transfer-matrix” method. In
this approach, each TS of the network can have either a voltage or a cur-
rent applied to it, and there is a resulting current or voltage at each of
those TS. This scheme is the discrete analogue of a mixed boundary con-
dition in a continuum system, where on parts of the boundary the electric
potential is specified, while on other parts it is the normal current density
that is specified.

2.2. The Mixed-Transfer-Matrix Method

In the simulation of three-dimensional (3D) networks, we use a sim-
ple cubic lattice, while the square lattice was used for simulation of
two-dimensional (2D) networks. The boundary conditions in the z- and
y-directions are the same as in the M/I case, namely equipotential plates
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at nz =1 and nz =N +1, and periodic boundary conditions along y in the
3D case. In the x-direction, a zero current boundary condition is applied
at all the final TS, i.e., at the end of the calculation. The fractions of I ,
M, and S are denoted by pI , pM , and pS , respectively. The strip is con-
structed by adding bond after bond with conductance chosen randomly
to be either 0, 1, or ∞ with the appropriate probabilities. Fig. 1(c) shows
such a 2D strip under construction. Bonds that lie along the x-direction
are called x-bonds, and similarly y-bonds and z-bonds. In order to mea-
sure the electrical properties of the completed part of the strip, voltages
Vi or currents Ii are applied at each of the TS i, resulting in a current
Ij or a voltage Vj at each TS j . The strip is built up along the x-direc-
tion. Adding a y-bond or a z-bond does not change any of the TS. By
contrast, adding an x-bond changes one TS into an internal site, which
can be omitted from subsequent considerations, but adds a new TS at
the dangling end of that bond. The new TS replaces the discarded one in
subsequent considerations. Thus the total number of TS remains constant
throughout the calculation, even though the strip length keeps increasing.
The number of TS is m, where m=Nz +1 in 2D strips and m=Ny × (Nz −
1) + 2 in 3D strips. We define mixed vectors A and B: The elements of
A and B are voltages or currents at the various TS. Two elements at the
same position in A and B are always of different character: If Ai is volt-
age, then Bi is current, and vice versa. A represents voltages and currents
that are imposed, B represents resulting quantities. Because the problem is
linear, A and B are connected by a matrix D

B =DA. (1)

As a consequence of this definition, the physical dimensions of some
elements of D are Ohm·m, others are (Ohm·m)−1, and yet others are
dimensionless—D is a mixed matrix. We use a characteristic vector Θ =
{θ1, θ2, . . . , θm}, with elements that are ±1, in order to indicate the physi-
cal character of the elements of A and B:

θi =1⇔ Ai =Vi, Bi = Ii,

θi =−1⇔ Ai = Ii, Bi =Vi.
(2)

For each bond that is added, D and Θ must be updated. Changing
Θ is necessary in order to prevent the appearance of infinite elements in
the matrix D. An appropriate Θ ensures that all the elements of D are
noninfinite. Taking into account all the different possible cases, there are
five different procedures for adding an x-bond and seven different proce-
dures for adding a y-bond or z-bond. Some of these procedures are quite
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complicated, therefore their description is relegated to Appendix D. Some
general properties of D are described in Appendices A and B—those prop-
erties are useful in computations.

The sizes of strips in our calculation are Nx × Nz and Nx × Ny × Nz

for 2D and 3D networks. The zero currents boundary condition at the
beginning (nx =0) and end (nx =Nx +1) of the strip is imposed as follows:
we start the simulation with Dij =0, θi =1 (i, j =1, . . . ,m), and end it by
adding a last layer (nx =Nx + 1) of x-bonds that are all perfectly insulat-
ing except for the TS which represents the top equipotential plate (nz =1)
and the TS which represents the bottom equipotential plate (nz =Nz +1).
Thus, all the elements of D will vanish except for D11, D1m, Dm1, Dmm,
while all the elements of Θ equal 1 with the possible exception of θm. We
keep θ1 = 1 throughout the calculation, therefore, if θm = 1 too, then the
conductance of the strip is given by D11. However, if θm =−1, then the TS
1 and m must be connected by a path of perfectly conducting (S) bonds
(see Appendix C). Consequently, the macroscopic conductance is then infi-
nite. In this case the only nonzero elements of D are Dm1 =−D1m =1.

In an M/I/S strip with a non-negligible value of pS , if the length
Nx is much greater than the widths Nz, Ny , then the probability of hav-
ing an S path which connects the equipotential plates at nz = 1 and nz =
Nz + 1 approaches 1. For that reason we only simulated long strips for
small values of pS . Most of our simulations were of short strips, con-
structed at the percolation threshold of the constituent with the largest
conductivity, where all the two or three linear sizes Nx , Ny , Nz were equal
to N , and N went up to 30 in 2D samples, up to 12, or sometimes even
15, in 3D samples. In such systems, the macroscopic response does not
saturate or “self average” with increasing N—the sample-to-sample fluctu-
ations remain large even when N is very large. We therefore had to sim-
ulate a large number of samples at each value of N , and then compute
the ensemble average, standard deviation, standard error, etc. For small
values of pS , we also simulated a small number of very long 3D strips,
with Nx �Nz,Ny , where σe remained finite, in order to compare with the
ensemble averaged σe from the short strips. The results of these two types
of simulations were consistent, as will be shown below.

3. RESULTS OF NUMERICAL SIMULATIONS

Three kinds of macroscopic conductivities are possible in M/I/S sys-
tems: 0 (the strip is perfectly insulating or I , the total number of such
strips is denoted by NI ), ∞ (the strip is perfectly conducting or S, the
total number such strips is denoted by NS), finite (their number is denoted
by NM ). σn denotes the finite conductivity of the short strip n. The
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fraction of S strips in MS/I networks and that of I strips in MI/S net-
works is less than 0.01 when pS in MS/I and pI in MI/S are less than
0.12. Therefore these networks, for which the macroscopic conductivity
or resistivity, respectively, diverges, are ignored in the statistical analysis
described below. For each size of networks, we simulated 10,000 short
strips in 3D and 50,000 in 2D. The average macroscopic conductivity σe
for MS/I is given by

σe = 1
NM +NI

NM∑
n=1

σn, (3)

while for MI/S it is given by

1
σe

= 1
NM +NS

NM∑
n=1

1
σn

. (4)

The last expression is just the arithmetic mean of the resistivities of the
various samples. The statistical error of each of these average values was
always estimated by calculating the standard error. In order to aid the
reader in visualizing the distribution of values of the conductivity for short
strip samples of a particular size, prepared at the percolation threshold, we
show such a distribution in Fig. 2 for the case of 3D normal conducting
short strips of MS/I networks.

We have carried out calculations of the conductivity for strips of var-
ious sizes in the vicinity of the percolation threshold for 2D and 3D ver-
sions of the two kinds of random networks. The results for MS/I of 2D
random networks with pS = 0.06 and various values of pI in the neigh-
borhood of 0.5 are displayed in Fig. 3. One can see how the behavior of
the conductivity as a function of strip size N changes when pI is varied
around 0.5. Clearly, pc =0.50 is still the critical point even when 6% of S

bonds are present, replacing the same amount of M bonds. Similar results
are obtained for the other three cases—MI/S in 2D, MS/I and MI/S in
3D. We therefore assume, in all further calculations, that the conductivity
threshold has the same value as the percolation threshold in the case of
simple M/I or M/S networks. An ensemble of samples are simulated, all
of which are at that threshold, and the finite size scaling hypothesis(4) is
used to compute the critical exponents t/ν and s/ν.

Fig. 4 shows log-log plots of σe vs. N ≡ Nz = Nx at pc, for different
fractions pS of the S bonds which replace M bonds in a 2D MS/I net-
work with pI = 1 −pc = 0.5. From the slopes of these plots, the values of
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Fig. 2. Abundance (i.e., number of samples) n vs. conductivity for an ensemble of short
strip, 3D, MS/I networks at the percolation threshold, i.e., when pI = 1 − pc, where pc =
0.2492. The values of the fraction pS of perfectly conducting bonds in the three-constituent
random network are indicated in the figure. The fraction of normal bonds in each case is
given by pM =pc −pS .
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Fig. 3. Log-log plot of the conductivity of short 2D MS/I random strips vs. strip size N ,
in the vicinity of the percolation threshold pc = 0.5. The fraction pS of S bonds was always
0.06.

t/ν immediately follow. A least-squares fit gives

t/ν =0.987±0.018, pS =0.0,

t/ν =0.990±0.018, pS =0.06,

t/ν =0.995±0.020, pS =0.12.

A similar procedure, applied to 3D MS/I networks with different val-
ues of pS , leads to Fig. 5, where σe is plotted vs. N ≡ Nz = Nx = Ny for
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Fig. 4. Log-log plot of conductivities of 2D MS/I short random networks vs. the strip size
N , at pM +pS =pc =0.5 but with different values of the fraction pS of perfectly conducting
bonds. Straight lines are linear fits.
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Fig. 5. Log-log plot of conductivities of 3D MS/I short random networks vs. the strip size
N , at pM +pS =pc =0.2492 but with different values of the fraction pS . Straight lines are lin-
ear fits.

pI = 1 −pc ∼= 0.7508 and different fractions pS of the S bonds. From the
slopes of these plots, the values of t/ν are found to be

t/ν =2.16±0.05, pS =0.0,

t/ν =2.23±0.05, pS =0.06,

t/ν =2.28±0.05, pS =0.12.
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Fig. 6. Log-log plot of conductivities of 3D MS/I long random networks with Nx =50,000
vs. the lateral strip size N ≡Nz =Ny , at pM +pS =pc =0.2492 but with different values of the
fraction pS . Straight lines are linear fits.

We also simulated some long strips of 3D MS/I networks with the same
values of pI and pS , in order to compare with the above results. These
strips had Nx = 50,000 � N ≡ Nz = Ny , and lead to the plots shown in
Fig. 6. The resulting values for the critical exponent are

t/ν =2.08±0.04, pS =0.0,

t/ν =2.11±0.05, pS =0.06,

t/ν =2.19±0.03, pS =0.12.

These differ slightly from the previous three values, and also show a slight
systematic trend with changes in pS . The other kind of 3D three-constit-
uent network, namely MI/S, could not be simulated as long strips using
the same algorithm, because the long equipotential plates at z=1 and z=
Nz +1 are always connected by some perfectly conducting paths when the
length Nx is large enough. We also found that long strip samples of 2D
three-constituent networks were untreatable because, even in the case of
MS/I strips, some perfectly conducting paths appeared in the sample even
at low concentrations of the S constituent. That is why we have long strip
results only for the case of 3D MS/I networks.

Figure. 7 shows plots of σe vs. N at pc, for different fractions pI of
the I bonds which replace M bonds in a 3D MI/S network where pS =
pc ∼= 0.2492. From the slopes we get the following results for the critical
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Fig. 7. Log-log plot of the conductivities of 3D MI/S short random networks vs. the strip
size N , at pS =pc =0.2492 and different fractions pI of I bonds. Straight lines are linear fits.

exponent s/ν

s/ν =0.95±0.04, pI =0.0,

s/ν =0.96±0.04, pI =0.06,

s/ν =0.96±0.04, pI =0.12.

A similar procedure, applied to 2D MI/S networks, leads to Fig. 8 and
to

s/ν =0.96±0.02, pI =0.0,

s/ν =0.97±0.02, pI =0.06,

s/ν =0.98±0.02, pI =0.12.
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Fig. 8. Log-log plot of the conductivities of 2D MI/S short random networks vs. the strip
size N , at pS =pc =0.5 and different fractions pI . Straight lines are linear fits.
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The data presented above is consistent with the idea that the critical
exponents do not change when a finite fraction of M bonds are replaced
by S bonds in the case of M/I , or by I bonds in case of M/S. Neverthe-
less, the error bars on these results are somewhat larger than those found
in earlier calculations, which were performed on simple two-constituent
percolating networks(5–7). Moreover, there is a slight systematic variation
of the values found for t/ν with increasing pS , as well as a slight system-
atic variation of the values found for s/ν with increasing pI . A reviewer
has suggested that these errors might be reduced, in the 3D case, if we
used a different value for pc in that case, namely pc =0.2488,(4) instead of
pc =0.2492 which was used in our calculations. In order to alleviate all of
these problems, we resorted to an alternative procedure for analyzing the
simulation results. This is explained in Section 4 below.

4. HIGHER ACCURACY TEST OF UNIVERSALITY

The results described in Section 3 lend support to the idea that M/I

and MS/I networks are in the same universality class of critical behav-
ior, as are also the M/S and MI/S networks. Nevertheless, it would be
desirable to have a stronger result: the large sample-to-sample fluctuations
in the macroscopic conductivity of short strips means that, even with the
rather large statistics which we amassed, the error bars are still quite large.
Even more troubling are the apparent systematic changes in the com-
puted critical exponents as pS increases in the MS/I mixtures and as pI

increases in the MI/S mixtures. Large systematic errors are expected to
occur due to the small values of N that were used in our simulations,
namely, N ≤30 in 3D and N ≤15 in 3D. For such small values of N , non-
negligible corrections to the asymptotic critical behavior can be expected.
In the 3D case, the absence of duality symmetry brings about a depen-
dence on N of pc itself. This, along with a possible error in the asymptotic
value of pc for N →∞, can also contribute to the systematic error when
finite size scaling is applied to simulations on finite size samples at pc.(4)

In order to circumvent, or at least lessen, some of these errors, we
applied an approach that was first used in the past to test whether the
electrical conductivity and elastic stiffness moduli of an M/S network
diverge with the same exponent at Pc.(8)

The basic idea in ref. 8 was to compare the two properties (elec-
trical conductivity and elastic stiffness) on identical or strongly correlated
network samples, before computing any ensemble averages. In the pres-
ent case, the same idea is implemented by simulating strongly correlated
pairs of networks: we first simulate a randomly constructed M/I sample
network and compute its macroscopic conductivity σe(pS = 0). we then
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randomly reset a fraction pS/(1−pI ) of the M bonds in that same sample
to be S bonds, thus changing it into an MS/I sample network, and recal-
culate σe(pS �= 0). We then compute the ratio of these two macroscopic
conductivities

RS ≡ σe(pS �=0)

σe(pS =0)
.

After repeating this for many such correlated network pairs of linear size
N , we calculate ensemble averages and standard deviations of the ratio RS .
In principle, these values should depend on N and pS . Our first expecta-
tion is that the actual deviations of σe, systematic as well as random, from
its ensemble average value, will be similar for the two samples in every
correlated pair of M/I and MS/I samples. Therefore the ratio RS should
exhibit reduced random fluctuations, as well as smaller systematic devia-
tions from the simple asymptotic dependence on the linear size N . In fact,
because we are trying to verify the hypothesis that the M/I and MS/I

networks exhibit the same kind of critical behavior, we hope to find that
RS(N,pS) is in fact independent of N for any fixed value of pS , but keeps
changing with pS .

Similar considerations can be applied to correlated pairs of M/S and
MI/S sample networks, where the MI/S sample is obtained from the M/S

sample by randomly resetting a fraction pI /(1−pS) of the M bonds to be
I bonds. The ratio

RI ≡ σe(pI �=0)

σe(pI =0)

is again calculated for many such pairs, and then analyzed statistically.
The ensemble average and standard deviation will depend on N and pI ,
in principle. However, if the M/S and MI/S networks belong to the same
universality class of critical behavior, then RI (N,pI ) should be indepen-
dent of N for any value of pI . Again, the random sample-to-sample fluc-
tuations of σe, as well as the systematic N -dependent deviations from
simple asymptotic scaling, should partially cancel out in the computation
of RI .

In performing this kind of analysis, we discard all samples that have
either zero or infinite macroscopic conductivity. Therefore, even though
we always simulated a fixed number (10,000) of samples, the number NM

which were analyzed fluctuated somewhat from case to case. Nevertheless,
that number was usually between 4000 and 5000.

The results for RI (N,pI ) and RS(N,pS) were analyzed in two fash-
ions: (a) The arithmetic average over all samples with given values of
N , pI or N , pS were calculated and are plotted vs. N in Figs. 9–12.
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Clearly, the points lie, approximately, on horizontal straight lines. These
points were least-squares fitted to straight lines aN + b. The values for a

and b, along with standard errors, appear in the captions of those fig-
ures. (b) The arithmetic average 〈RS〉 and relative standard error ERS

≡√
〈R2

S〉−〈RS〉2/[
√

NM −1〈RS〉] of RS(N,pS), over all NM samples with
given values of pS and N that had finite nonzero values of σe, were cal-
culated and appear in Table I. Likewise, the arithmetic average 〈RI 〉 and

relative standard error ERI
≡

√
〈R2

I 〉−〈RI 〉2/[
√

NM −1〈RI 〉] of RI (N,pI ),
over all NM samples with given values of pI and N that had finite non-
zero values of σe, were calculated and appear in Table II.

Also exhibited in these tables are the average values and relative stan-
dard error of σe obtained from the same samples.

Clearly, the relative fluctuations of the ratios RS , RI are enormously
reduced as compared to the relative fluctuations of the σe values. The
errors quoted in the two tables for RI and RS are much smaller than the
errors quoted in the captions of Figs. 9–12 for these two quantities: this is
due to the fact that, in processing the figures, each of the plotted points
is treated as a single exactly given datum and a least squares analysis is
used to fit a straight line to those points. By contrast, in the two tables the
conductance ratio of each pair of correlated samples is treated as a single
exactly given datum and all those points are used to calculate an arithme-
tic average as well as the standard error. Clearly, the latter analysis has a
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Fig. 9. Plot of the ratio RS in 2D MS/I short random networks vs. the strip size N , at
pM +pS =pc =0.5 but with different fractions pS . A least-squares fit to a straight line RS =
aN + b leads to a(pS = 0.06) = (−5.75 ± 0.63) × 10−4, b(pS = 0.06) = 1.158 ± 0.008, a(pS =
0.12)= (−1.59±0.13)×10−3, b(pS =0.12)=1.375±0.009.
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Fig. 10. Plot of the ratio RI of 2D MI/S short random networks vs. the strip size N , at
pS = pc = 0.5, with different fractions pI . A least-squares fit to a straight line RI = aN + b

leads to a(pI =0.06)= (1.10±0.30)×10−4, b(pI =0.06)=0.867±0.009, a(pI =0.12)= (1.53±
0.67)×10−4, b(pI =0.12)=0.732±0.008.
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Fig. 11. Plot of the ratio RS in 3D MS/I short random networks vs. the strip size N , at
pM + pS = pc = 0.2492 but with different fractions pS . A least-squares fit to a straight line
RS =aN +b leads to a(pS =0.06)= (−2.35±0.74)×10−3, b(pS =0.06)=1.363±0.011, a(pS =
0.12)= (−6.31±0.96)×10−4, b(pS =0.12)=2.135±0.015.

much larger data base and can therefore lead to much smaller statistical
errors if all the data points are distributed around the same common aver-
age value.
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Fig. 12. Plot of the ratio RI of 3D MI/S short random networks vs. the strip size N , at
pS =pc=0.2492, with different fractions pI . A least-squares fit to a straight line RI =aN +b

leads to a(pI =0.06)= (7.98±5.16)×10−5, b(pI =0.06)=0.911±0.008, a(pI =0.12)= (5.71±
8.12)×10−5, b(pI =0.12)=0.821±0.007.

The fact that the least-squares-fitted straight lines in Fig. 9 have a
small negative slope whose magnitude increases with increasing pS , still
suggests a small tendency of t/ν to increase with pS in 2D MS/I net-
works. However, in the 3D case (Fig. 11) the small negative slope seems
first to increase when pS is increased from 0 to 0.06, but then it decreases
somewhat when pS is further increased up to 0.12. Similarly, the small
positive slopes in the least-squares-fitted straight lines of Figs. 10 and 12
still suggest that s/ν has a small tendency to increase when pI is increased
from 0 to 0.06 in the MI/S networks. However, it is not clear whether that
tendency persists or is reversed when pI is further increased up to 0.12.

The small nonzero slopes found in the almost horizontal fitted
straight lines of Figs. 9–12 can easily be translated into approximate small
changes in the critical exponents t/ν and s/ν. These changes turn out to
be 1–2 orders of magnitude smaller than the systematic changes found in
Section 3. Therefore, our conclusion from the improved method of analy-
sis described in this section is that t/ν in the MS/I networks and s/ν in
the MI/S networks are both unchanged from their values for the simple
two-constituent M/I and M/S percolating networks, respectively.

5. CONCLUSIONS

A mixed-transfer-matrix algorithm was developed, which allows accu-
rate computation of the macroscopic response of three-constituent M/I/S
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Table I. MS/I Networks

2D 3D

pS N 〈σe〉 Eσe (%) 〈RS〉 ERS
(%) pS N 〈σe〉 Eσe (%) 〈RS〉 ERS

(%)

0.00 20 0.0304 0.6 0.00 8 0.0047 1.5
25 0.0238 0.5 10 0.0031 1.4
30 0.0200 0.4 12 0.0020 1.5

0.06 20 0.0352 0.5 1.158 0.04 0.06 8 0.0065 1.5 1.378 0.1
25 0.0276 0.5 1.157 0.08 10 0.0043 1.4 1.364 0.1
30 0.0234 0.4 1.156 0.1 12 0.0028 1.4 1.362 0.2

0.12 20 0.0419 0.6 1.377 0.05 8 0.0106 1.6 2.221 0.2
25 0.0328 0.7 1.372 0.08 10 0.0069 1.5 2.158 0.1
30 0.0277 0.5 1.370 0.1 12 0.0045 1.5 2.135 0.1

Table II. MI/S Networks

2D 3D

pI N 〈σe〉 Eσe (%) 〈RI 〉 ERI
(%) pI N 〈σe〉(%) Eσe (%) 〈RI 〉 ERI

(%)

0.00 20 36.271 1.19 0.00 8 11.455 0.93
25 43.943 1.16 10 14.202 0.95
30 53.115 1.17 12 16.746 0.95

0.06 20 31.269 1.12 0.8670 0.05 0.06 8 10.434 0.93 0.9119 0.01
25 37.928 1.16 0.8671 0.06 10 12.934 0.95 0.9113 0.03
30 46.000 1.17 0.8688 0.09 12 15.260 0.96 0.9117 0.03

0.12 20 26.279 1.21 0.7347 0.2 0.12 8 9.404 0.93 0.8232 0.05
25 31.976 1.18 0.7352 0.15 10 11.665 0.95 0.8226 0.06
30 38.768 1.19 0.7363 0.1 12 13.771 0.95 0.8233 0.06

conducting networks where the M bonds have finite conductance, while
the I bonds have zero conductance, and the S bonds have infinite conduc-
tance. The algorithm was used to simulate random M/I/S networks at the
joint percolation threshold of the M and S constituents, as well as at the
percolation threshold of the S constituent, in order to study the universal-
ity classes of those systems.

Our results provide strong empirical evidence that the universality
assumptions which we set out to test are valid: MS/I networks at or near
pI = 1 −pc exhibit the same critical behavior for σe as do M/I networks.
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Similarly, MI/S networks at or near pS = pc exhibit the same critical
behavior for σe as do M/S networks. These conclusions substantiate some
of the crucial assumptions that had to be made when arguing for the exis-
tence of some nontrivial exact relations between critical behaviors of elas-
tic and electrical properties of percolating systems. In particular, it follows
from those assumptions that the elasticity critical exponents S and T of
any macroscopic elastic stiffness modulus Ce satisfy S = s and T = t + 2ν,
and that the three-constituent M/I/S elastic percolating networks also lie
in the same universality classes as the simple two-constituent M/I and
M/S percolating elastic networks.

Other assumptions made in refs. 1 and 2, in the attempt to prove
the exact relations S = s and T = t + 2ν, still remain to be verified. These
include the assumption that the universality of critical behavior of Ce
extends to the limit where, in the MS/I network, all the angle bending
force constants for angles between bond pairs that are not FNB’s are reset
to be infinite, leaving only some of the FNB pairs with noninfinite force
constants for the relative azimuth angle(2). In 3D networks this means
all the angles between nearest-neighbor bonds of types M and S become
fixed. Another assumption is that, in M/I networks, the finite value of
bond stretching constant k is an irrelevant parameter, and therefore the
critical behavior of Ce is unchanged, as long as the total elastic energy of
stretching all the bonds is less than the total energy of bending the azi-
muth angles between all the FNB pairs. This last assumption is required
even to demonstrate that S = s and T = t +2ν in the case of 2D networks.

In contrast with the work reported in this article, the assumptions
described in the preceding paragraph will need to be tested on percolat-
ing elastic networks, not on conducting networks.

The mixed-transfer-matrix approach presented here can also be
applied to other network models where there are constituents whose
physical parameters include finite values, as well as the values 0 and ∞.
In particular, this approach can hopefully be applied to network models
of high-field magneto-transport.

APPENDIX A: PROPERTIES OF THE MIXED MATRIX D

(a) Symmetry

Dij = Dji, θi = θj ,

−Dji, θi =−θj .

As a consequence of this, the matrix θiDij θj (note that summation is not
implied in this expression!) is symmetric.
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(b) Non-negativity ∑
ij

AiDijAj �0

for any real values of the Ai .

APPENDIX B: ISOlATED SITE, SUPERCLUSTER, AND

REPRESENTATIVE SITE

A terminal site (TS) J that is not connected by a conducting path to
any other TS is called an “isolated site”. We must then have θJ = 1 and
DJi =DiJ =0 for any TS i, including J itself, i.e., DJJ =0.

If the TS J0, J1, . . . , JL−1 are connected to each other by perfectly
conducting paths, then they are said to form a supercluster CL. There are
now two possible scenarios:

A: CL is not connected by finite conductance paths to any other TS.
In this case we choose θJ0 =1, θJn =−1 (n=1, . . . ,L−1); then

DJnJ0 =1,

DJ0Jn =−1.
(B.1)

All the other elements of D related to any TS of CL are 0, including
DJ0J0 =0. Note that J0 is chosen arbitrarily as a special TS in CL—we call
it the “representative site”. The voltages of other TS in CL are all equal
to VJ0 .

B: CL is connected to other TS by finite conducting paths. Such TS
are called “normally connected terminal sites”. In this case, two forms are
possible for Θ and D:

(a) Similar to A, except that now DJ0J0 >0 and DJ0i �=0, DiJ0 �=0 for
any TS i that is normally connected to CL.

(b) θJn =−1, (n=0,1, · · · ,L−1): In this case the supercluster TS are
all equivalent and there is no special representative site. The elements of D

that involve any one or two terminal sites in CL are all equal and positive.
Elements of D that involve any TS in CL and a particular normally con-
nected TS outside CL all have the same nonzero real value which is deter-
mined by that particular site.

We only use the form (a) in our calculation. In that case, if Dkk = 0
and θk = −1, we know that the TS k is in a supercluster. On the other
hand, if Dkk =0 and θk =1, then we know that k is either an isolated site
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or a representative site. In order to decide in this last case what is the
character of the TS k, we use the following criterion:

m∑
i=1

Dik =0, ⇒k is an isolated site,

m∑
i=1

Dik =L, ⇒k is a representative site in a supercluster

CL with L TS.

In addition, we know that i ∈CL if Dik = 1, and that i /∈CL if Dik =
0. If we used the form (b), or allowed both of the forms (a) and (b) to
be used, then it would be difficult to identify the character of TS k when
Dkk = 0: we would need to check all the m × m elements of D, and the
computation would become hopelessly complex and time consuming. That
is why we only use the form (a) in our calculations: after a bond is added,
we check the elements of the vector Θ and the diagonal elements of the
matrix D. If θk =−1, and Dkk �=0, we switch the value of θk to θk =1, and
D is updated as follows:

D′
kk =1/Dkk,

D′
ik =Dik/Dkk, i =1, . . . ,m (i �=k),

D′
kj =−Dkj/Dkk, j =1, . . . ,m (j �=k),

D′
ij =Dij −Dkj/Dkk, i, j =1, . . . ,m (i, j �=k).

(B.2)

This has the effect of changing the form (b) to the form (a). It is useful to
note that any current that is induced to flow into a supercluster CL (i.e.,
any current which is not directly applied to it) can only flow into the rep-
resentative TS of CL. Also, a negative value of θi =−1 only appears if i is
a non-representative TS of some supercluster. All other TS have θi =1.

APPENDIX C: OBTAINING THE MACROSCOPIC CONDUCTANCE

OF A STRIP SAMPLE

We note that, for a TS that is not in a supercluster, we must have
θk =1. Therefore, if θk =−1, then the TS k must belong to a supercluster.
Because we use the form (a), there is then always one TS in the super-
cluster whose characteristic element of the vector Θ equals 1. Since we
maintain θ1 = 1 throughout the construction of the strip, therefore at the
end of the calculation, after we add insulating x-bonds at the TS i (i =
2, . . . ,m−1), we will have one of the following two situations: (a) θm =1
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and D11 =Dmm =−D1m =−Dm1, in which case D11 is the noninfinite con-
ductance of the short strip, while the other elements of D all vanish. (b)
θm =−1 and the TS m is in a supercluster together with the TS 1: the strip
then has an infinite conductance.

APPENDIX D: THE UPDATING ALGORITHM

Based on the properties of matrix D and supercluster, we describe the
algorithm for updating the matrix D and the characteristic vector Θ every
time that a bond is added to the strip network. In this section, Dij and θi

denote elements of the old D and Θ, while D′
ij and θ ′

i denote elements
of the updated matrix D′ and characteristic vector Θ ′. We use a Greek
subscript α to denote the site where an x-bond is added. That site ceases
to be a TS, but a new TS now appears at the other end of the added x-
bond. This new TS is also denoted by α. y-bonds and z-bonds are added
between two adjacent sites which are denoted by α and β. Unless stated
otherwise, the indices i and j range from 1 up to m. g is the conductance
of a normal bond.

Adding an x-bond at site α

(1) Normal bond, θα =1:

D′
ij =Dij − DiαDαj

g +Dαα

,

θ ′
i = θi .

(D.1)

(2) Normal bond, θα =−1:

D′
ij =Dij + 1

g
δiαδjα,

θ ′
i = θi .

(D.2)

(3) Perfectly insulating bond, θα =1: the new site α is an isolated site.
The following cases are possible:

a. Dαα �=0:

D′
ij =Dij − DiαDαj

Dαα

,

θ ′
i = θi .

(D.3)

b. Dαα =0; there are now two possibilities:
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(i) Dαj = 0 for all values of j : the old site α was not connected to
any other site, thus nothing is changed after adding a perfectly insulating
x-bond, therefore no changes are made in D or Θ. In particular, we have,
for any i, j ,

D′
iα =D′

αj =0,

θ ′
i = θi .

(D.4)

(ii) DαJn =−1(n=1, . . . ,L−1): the old site α was a representative site
in a supercluster CL. If L=2, that cluster becomes two isolated sites after
adding a perfectly insulating x-bond at α, therefore, for any i, j , we have

D′
iα =D′

αj =D′
iJ1

=D′
J1j

=0,

θ ′
J1

=1.
(D.5)

All the other elements in D and Θ remain unchanged.
If L > 2, there will be no representative site in the remaining super-

cluster CL−1, therefore we must choose one of the TS in CL−1 as the new
representative site J1. Keeping in mind that the new site α is an isolated
site, we get, for any i, j ,

D′
iα =D′

αj =0,

D′
JnJ1

=−D′
J1Jn

=1, (n=2, . . . ,L−1),

θ ′
J1

=1.

(D.6)

All the other elements in D and Θ are unchanged.
(4) Perfectly insulating bond, θα =−1: in this case site α is in a super-

cluster CL, But because it is not a representative site, we only need to reset
the elements of D and Θ which include the index α. All the other ele-
ments remain unchanged. Thus, for any i, j , we have

D′
iα =D′

αj =0,

θ ′
α =1.

(D.7)

This procedure remains valid even when L= 2, i.e., for a two-sites super-
cluster C2.

(5) Perfectly conducting bond: D and Θ remain unchanged.
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Adding a vertical bond (z-bond or y-bond) between α and β

(1) Normal bond, θα =1, θβ =1:

D′
ij =Dij +g(δαj − δβj )(δαi − δβi),

θ ′
i = θi .

(D.8)

(2) Normal bond, θα =−1, θβ =−1:

D′
ij =Dij − g(Diα −Diβ)(Dαj −Dβj )

1+g(Dαα +Dββ −Dαβ −Dβα)
,

θ ′
i = θi .

(D.9)

(3) Normal bond, θα =1, θβ =−1;

D′
ij =Dij −g

DiβDβj −Diβδjα +Dβjδiα − δiαδjα

1+gDββ

,

θ ′
i = θi .

(D.10)

(4) Perfectly conducting bond, θα =1, θβ =1: α and β become a two-
site supercluster C2. Thus, one of the two characteristic vector elements
should switch its value to −1. Since we want to keep θ1 ≡1 always, the TS
with the larger index is the one whose characteristic vector element should
be switched. Supposing β >α, we get

D′
αα =Dαα +Dββ +Dαβ +Dβα,

D′
αβ =−1,

D′
βα =1,

D′
αj =Dαj +Dβj , j �=α,β,

D′
i,α =Diα +Diβ, i �=α,β,

D′
βj =Diβ =0, i, j �=α,

D′
ij =Di,j , i, j �=α,β,

θ ′
β =−1,

θ ′
i = θi, i �=β.

(D.11)

(5) Perfectly conducting bond, θα =−1, θβ =−1: because we use the
form (a), both site α and site β are in superclusters, possibly even in the
same supercluster. Two representative sites of two clusters can be found
using Eq. (B.1). We then connect the two representative sites, transforming
D and Θ according to Eq. (D.11): physically this is equivalent to adding a
perfectly conducting bond between α and β. If the two representative sites
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are the same site, then α and β were in the same supercluster even before
addition of the perfectly conducting bond between them. In that case D

and Θ remain unchanged.
(6) Perfectly conducting bond, θα = 1, θβ =−1: suppose that site β is

in a supercluster CL. If Dβα =Dαβ =1, then α is the representative site of
CL, therefore nothing is changed. If α �=1 and Dαβ =Dβα =0, then α will
become a nonrepresentative site of CL after adding the perfectly conduct-
ing bond. We thus get

D′
αα =D′

ββ =D′
αβ =D′

βα =0,

D′
αj =D′

βj =Dβj , (j �=α,β),

D′
iα =D′

iβ =Diβ, (i �=α,β),

D′
ij =Di,j +DiαDβj −DiβDαj −DααDiβDβj , (i, j �=α,β),

θ ′
α =−1,

θ ′
i = θi, (i �=α).

(D.12)

If α = 1 and Dαβ =Dβα = 0, its characteristic vector element must be
θ1 = 1 �= −1. We must then first find the representative site of CL, then,
using Eq. (D.11), we connect it to α by a perfectly conducting bond. This
is physically equivalent to actually connecting the TS α and β by such a
bond. The TS α then becomes the new representative TS of the expanded
supercluster.

(7) Perfectly insulating bond: D and Θ remain unchanged.
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